TETRIS ACTIVITY

MATHEMATICS: Geometry
SCIENCE: Critical Thinking
ART: Drawing
AIM: Students manipulate geometrical figures.
BACKGROUND: This game is a lesson in geometrical transformations. A geometrical transformation changes an object's position or orientation, but not its shape or size. There are three basic transformations: translations, reflections, and rotations. A translation, or slide, changes the object's position without changing its orientation. A reflection, or flip, is similar to a mirror image. A rotation, or turn, spins the pattern around a point.

BEFORE PLAYING

Discussion: As a class, discuss the types of geometric transformations. Help students define slide, flip, and turn. Help them visualize each transformation and its result by coming up with everyday slides, flips, and turns. (Examples: Slide—playground slide, you move from high to low but you are still sitting upright when you hit the bottom. Flipgymnast doing a handstand. Turn-basketball player pivoting on one foot.)

AFTER PLAYING

Activity: Explore tessellations, or mosaics created by repeatedly positioning one or more congruent shapes next to each other without gaps or overlaps. A tessellation is a result of performing geometric transformations. Visit the tessellation web sites or look through the tessellation book listed under Resources below. Then challenge your students to design and color their own tessellations. Post the drawings around the room.

ASSESSMENT: Check students' answers on the After Playing Worksheet.

TA-6.1

TETRIS ACTIVITY

RESOURCES

Symmetry and Tessellations: Investigating Patterns (Grades 5-8), by Jill Britton (Dale Seymour, 1999, \$25.95, ISBN 0-76900-083-5). Integrate art and math with creative math projects that explore symmetry, patterns, and more. To order, call 1-800-526-9907.
M.C. Escher (1898-1972), a famous Dutch graphic artist, masterfully combined art and math in his works. Visit these sites to view his butterfly, lizard, and fish tessellations.
http://www.worldofescher.com/gallery/SymmetryE70.html http://www.worldofescher.com/gallery/SymmetryE25.html http://www.worldofescher.com/gallery/SymmetryE72.html

ANSWERS

Before Playing, Worksheet: (1.

2.

3.人
4.
5.

6.

7.

9.

8.

CONNECT TO YOUR CURRICULUM

This activity can help you meet these National Standards:

Mathematics:

-Predict and describe the results of sliding, flipping, and turning two-dimensional shapes
-Identify and describe line and rotational symmetry in two- and three-dimensional shapes and designs
-Create and describe mental images or objects,patterns, and paths

- Recognize geometric ideas and relationships and apply them to other disciplines and to problems that arise in the classroom or in everyday life
-Investigate, describe, and reason about the results of subdividing, combining, and transforming shapes
-Describe the shape and important features of a set of data and compare related data sets, with an emphasis on how the data are distributed

Science:

- Systems, order, and organization
-Change, constancy, and measurement
-Abilities necessary to do scientific inquiry

CURRICULUM AREAS

Math: geometry, flipping, sliding, turning, symmetry, congruency.

Science: measuring.
Art: drawing tessellations.
Technology: computer science.
Name: \qquad
Date: \qquad
Using the dotted line as the line of symmetry, complete each shape.
Example:

1.)

2.)

3.)
5.)

8.)

9.)

10.)

TETRIS ACTIVITY

(After Playing)
Name: \qquad
Date: \qquad
Identify each image as a slide, flip, or turn. Circle the word under the correct column. Use a mirror to decipher the message about a famous artist.
Example:

